226 research outputs found

    Adverse event detection by integrating twitter data and VAERS

    Get PDF
    Background: Vaccinehasbeenoneofthemostsuccessfulpublichealthinterventionstodate.However,vaccines are pharmaceutical products that carry risks so that many adverse events (AEs) are reported after receiving vaccines. Traditional adverse event reporting systems suffer from several crucial challenges including poor timeliness. This motivates increasing social media-based detection systems, which demonstrate successful capability to capture timely and prevalent disease information. Despite these advantages, social media-based AE detection suffers from serious challenges such as labor-intensive labeling and class imbalance of the training data. Results: Totacklebothchallengesfromtraditionalreportingsystemsandsocialmedia,weexploittheircomplementary strength and develop a combinatorial classification approach by integrating Twitter data and the Vaccine Adverse Event Reporting System (VAERS) information aiming to identify potential AEs after influenza vaccine. Specifically, we combine formal reports which have accurately predefined labels with social media data to reduce the cost of manual labeling; in order to combat the class imbalance problem, a max-rule based multi-instance learning method is proposed to bias positive users. Various experiments were conducted to validate our model compared with other baselines. We observed that (1) multi-instance learning methods outperformed baselines when only Twitter data were used; (2) formal reports helped improve the performance metrics of our multi-instance learning methods consistently while affecting the performance of other baselines negatively; (3) the effect of formal reports was more obvious when the training size was smaller. Case studies show that our model labeled users and tweets accurately. Conclusions: WehavedevelopedaframeworktodetectvaccineAEsbycombiningformalreportswithsocialmedia data. We demonstrate the power of formal reports on the performance improvement of AE detection when the amount of social media data was small. Various experiments and case studies show the effectiveness of our model

    Unveiling the Potential of Knowledge-Prompted ChatGPT for Enhancing Drug Trafficking Detection on Social Media

    Full text link
    Social media platforms such as Instagram and Twitter have emerged as critical channels for drug marketing and illegal sale. Detecting and labeling online illicit drug trafficking activities becomes important in addressing this issue. However, the effectiveness of conventional supervised learning methods in detecting drug trafficking heavily relies on having access to substantial amounts of labeled data, while data annotation is time-consuming and resource-intensive. Furthermore, these models often face challenges in accurately identifying trafficking activities when drug dealers use deceptive language and euphemisms to avoid detection. To overcome this limitation, we conduct the first systematic study on leveraging large language models (LLMs), such as ChatGPT, to detect illicit drug trafficking activities on social media. We propose an analytical framework to compose \emph{knowledge-informed prompts}, which serve as the interface that humans can interact with and use LLMs to perform the detection task. Additionally, we design a Monte Carlo dropout based prompt optimization method to further to improve performance and interpretability. Our experimental findings demonstrate that the proposed framework outperforms other baseline language models in terms of drug trafficking detection accuracy, showing a remarkable improvement of nearly 12\%. By integrating prior knowledge and the proposed prompts, ChatGPT can effectively identify and label drug trafficking activities on social networks, even in the presence of deceptive language and euphemisms used by drug dealers to evade detection. The implications of our research extend to social networks, emphasizing the importance of incorporating prior knowledge and scenario-based prompts into analytical tools to improve online security and public safety

    Let Graph be the Go Board: Gradient-free Node Injection Attack for Graph Neural Networks via Reinforcement Learning

    Full text link
    Graph Neural Networks (GNNs) have drawn significant attentions over the years and been broadly applied to essential applications requiring solid robustness or vigorous security standards, such as product recommendation and user behavior modeling. Under these scenarios, exploiting GNN's vulnerabilities and further downgrading its performance become extremely incentive for adversaries. Previous attackers mainly focus on structural perturbations or node injections to the existing graphs, guided by gradients from the surrogate models. Although they deliver promising results, several limitations still exist. For the structural perturbation attack, to launch a proposed attack, adversaries need to manipulate the existing graph topology, which is impractical in most circumstances. Whereas for the node injection attack, though being more practical, current approaches require training surrogate models to simulate a white-box setting, which results in significant performance downgrade when the surrogate architecture diverges from the actual victim model. To bridge these gaps, in this paper, we study the problem of black-box node injection attack, without training a potentially misleading surrogate model. Specifically, we model the node injection attack as a Markov decision process and propose Gradient-free Graph Advantage Actor Critic, namely G2A2C, a reinforcement learning framework in the fashion of advantage actor critic. By directly querying the victim model, G2A2C learns to inject highly malicious nodes with extremely limited attacking budgets, while maintaining a similar node feature distribution. Through our comprehensive experiments over eight acknowledged benchmark datasets with different characteristics, we demonstrate the superior performance of our proposed G2A2C over the existing state-of-the-art attackers. Source code is publicly available at: https://github.com/jumxglhf/G2A2C}.Comment: AAAI 2023. v2: update acknowledgement section. arXiv admin note: substantial text overlap with arXiv:2202.0938

    Grape: Knowledge Graph Enhanced Passage Reader for Open-domain Question Answering

    Full text link
    A common thread of open-domain question answering (QA) models employs a retriever-reader pipeline that first retrieves a handful of relevant passages from Wikipedia and then peruses the passages to produce an answer. However, even state-of-the-art readers fail to capture the complex relationships between entities appearing in questions and retrieved passages, leading to answers that contradict the facts. In light of this, we propose a novel knowledge Graph enhanced passage reader, namely Grape, to improve the reader performance for open-domain QA. Specifically, for each pair of question and retrieved passage, we first construct a localized bipartite graph, attributed to entity embeddings extracted from the intermediate layer of the reader model. Then, a graph neural network learns relational knowledge while fusing graph and contextual representations into the hidden states of the reader model. Experiments on three open-domain QA benchmarks show Grape can improve the state-of-the-art performance by up to 2.2 exact match score with a negligible overhead increase, with the same retriever and retrieved passages. Our code is publicly available at https://github.com/jumxglhf/GRAPE.Comment: Findings of EMNLP202
    • …
    corecore